Sunday, 25 February 2018

Using a PIR with Arduino

Connecting to a PIR



Most PIR modules have a 3-pin connection at the side or bottom. The pinout may vary between modules so triple-check the pinout! It's often silkscreened on right next to the connection (at least, ours is!) One pin will be ground, another will be signal and the final one will be power. Power is usually 3-5VDC input but may be as high as 12V. Sometimes larger modules don't have direct output and instead just operate a relay in which case there is ground, power and the two switch connections.
The output of some relays may be 'open collector' - that means it requires a pullup resistor. If you're not getting a variable output be sure to try attaching a 10K pullup between the signal and power pins.
An easy way of prototyping with PIR sensors is to connect it to a breadboard since the connection port is 0.1" spacing. Some PIRs come with header on them already, the one's from adafruit have a straight 3-pin header on them for connecting a cable


For our PIR's the red cable is + voltage power, black cable is - ground power and yellow is the signal out. Just make sure you plug the cable in as shown above! If you get it backwards you won't damage the PIR but it won't work.
 

Reading PIR Sensors

Connecting PIR sensors to a microcontroller is really simple. The PIR acts as a digital output so all you need to do is listen for the pin to flip high (detected) or low (not detected).Its likely that you'll want reriggering, so be sure to put the jumper in the H position!
Power the PIR with 5V and connect ground to ground. Then connect the output to a digital pin. In this example we'll use pin 2.
The code is very simple, and is basically just keeps track of whether the input to pin 2 is high or low. It also tracks the state of the pin, so that it prints out a message when motion has started and stopped.


The Code:


  1. /*
  2. * PIR sensor tester
  3. */
  4. int ledPin = 13; // choose the pin for the LED
  5. int inputPin = 2; // choose the input pin (for PIR sensor)
  6. int pirState = LOW; // we start, assuming no motion detected
  7. int val = 0; // variable for reading the pin status
  8. void setup() {
  9. pinMode(ledPin, OUTPUT); // declare LED as output
  10. pinMode(inputPin, INPUT); // declare sensor as input
  11. Serial.begin(9600);
  12. }
  13. void loop(){
  14. val = digitalRead(inputPin); // read input value
  15. if (val == HIGH) { // check if the input is HIGH
  16. digitalWrite(ledPin, HIGH); // turn LED ON
  17. if (pirState == LOW) {
  18. // we have just turned on
  19. Serial.println("Motion detected!");
  20. // We only want to print on the output change, not state
  21. pirState = HIGH;
  22. }
  23. } else {
  24. digitalWrite(ledPin, LOW); // turn LED OFF
  25. if (pirState == HIGH){
  26. // we have just turned of
  27. Serial.println("Motion ended!");
  28. // We only want to print on the output change, not state
  29. pirState = LOW;
  30. }
  31. }
  32. }
 
 
 
Don't forget that there are some times when you don't need a microcontroller. A PIR sensor can be connected to a relay (perhaps with a transistor buffer) without a micro!

No comments:

Post a Comment